Closing Tues: HW 12.4, 13.2 Exam 2 is next Thursday! Covers:
10.1-10.3: Analyzing a function 11.1,2: \quad Deriv. of $\ln (x)$ and e^{x} 12.1,3,4: Integrals, finding C 13.2: Definite Integrals

Entry Task (from HW):
$A C^{\prime}(q)=-\frac{4}{q^{2}}+\frac{1}{4}$,
$A C(4)=10$
Find $A C(q), T C(q)$, and $F C$.

Total Values and Marginal Values	Total Values and Average Values				
$T R(x)=\int M R(x) d x$	$A R(x)=\frac{T R(x)}{x}$				
$T R^{\prime}(x)=M R(x)$	$T R(x)=x A R(x)$	$	$	$T C(x)=\int M C(x) d x$	$A C(x)=\frac{T C(x)}{x}$
:---	:---				
$T C^{\prime}(x)=M C(x)$	$T C(x)=x A C(x)$				
$P(x)=\int M P(x) d x$					
$P^{\prime}(x)=M P(x)$					
Initial conditions: $T R(0)=0, T C(0)=F C$					
Note: $P(x)=T R(x)-T C(x)$					

Section 13.2: Definite integrals and the

 Fundamental Theorem of CalculusRecall: An indefinite integral is a function (the general antiderivative)

$$
\int f(x) d x=F(x)+C
$$

New: A definite integral is a number that represents net area

$$
\int_{a}^{b} f(x) d x=\begin{aligned}
& \text { "net area between } \\
& f(x) \text { and the } x-\text { axis } \\
& \text { from } x=a \text { to } x=b "
\end{aligned}
$$

Notes

Above the x-axis counts as positive area. Below the x-axis counts as negative area. " a " and " b " are called the bounds, or limits, of integration.

$$
\int_{5}^{10} f(x) d x=
$$

$$
\int_{10}^{11} f(x) d x=
$$

Now consider
$A(m)=\int_{0}^{m} f(x) d x$
$=$ "accumulated net area from 0 to m "
Using the same graph, what is
$A(0)=\int_{0}^{0} f(x) d x=$
$A(4)=\int_{0}^{4} f(x) d x=$
$A(5)=\int_{0}^{5} f(x) d x=$
$A(8)=\int_{0}^{8} f(x) d x=$

Questions/Observations:

Where is $A(m)$ increasing/decreasing?

See any connections for $A(m)$ and $f(x)$?

What does $A(5)-A(4)$ represent?

In addition, in the activities you found:

1. "the area under the speed graph" equals "the change in distance".

$$
\int_{a}^{b} s(t) d t=D(b)-D(a)
$$

2. "the area under the MR/MC graph" equals "the change in TR/TC"

$$
\begin{aligned}
& \int_{a}^{b} M R(x) d x=T R(b)-T R(a) \\
& \int_{a}^{b} M C(x) d x=T C(b)-T C(a)
\end{aligned}
$$

These are examples of a profound fact about anti-derivatives and areas.

The Fundamental Theorem of Calculus
If $F(x)$ is any anti-derivative of $f(x)$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

How to compute definite integrals
Step 1: Find any antiderivative, $F(x)$. (usually we pick $\mathrm{C}=0$, but you use any C value you want and it doesn't change the answer)

Step 2: Evaluate $F(x)$ at $x=b$ and $x=a$.
Step 3: Subtract
We do all this in one line as follows:

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

More Examples:

1. $\int_{1}^{2} 6 x^{2}-2 x+5 d x$
2. $\int_{1}^{5} \frac{3}{4 x^{2}} d x$
3. $\int_{0}^{1} e^{x / 3} d x$
4. $\int_{1}^{4} \sqrt{x} d x$
5. $\int_{1}^{e} \frac{5}{x} d x$
6. (18 points) Below is the graph of a function $y=f(x)$.

Define the function $A(m)$ by $A(m)=\int_{0}^{m} f(x) d x$.
NOTE: You do not need to show any work for the problems on this page.
(a) Name all values of m at which $A(m)$ has a local minimum.

ANSWER: $m=$ \qquad
(b) Give the one-minute interval over which $A(m)$ increases the most.

ANSWER: from \qquad to \qquad
(c) True or False?
circle one
T F
$A(2.51)>A(2.50)$
$\mathbf{T} \quad \mathbf{F} \quad f(2.51)>f(2.50)$
$\mathbf{T} \quad \mathbf{F} \quad A(10.01)>A(10.00)$
$\mathbf{T} \quad \mathbf{F} \quad f^{\prime}(1.00)>f^{\prime}(1.01)$

Here is the graph of $y=f(x)$ again.

And, again, $A(m)=\int_{0}^{m} f(x) d x$.
NOTE: The problems on this page require some justification: clearly mark points and lines on the graph, shade areas, show calculations of slopes and areas, etc.
(e) Compute $A(1)$.

ANSWER: $A(1)=$ \qquad
(f) Compute $A^{\prime}(12)$.

ANSWER: $A^{\prime}(12)=$ \qquad
(g) Compute $A^{\prime \prime}(5)$.

ANSWER: $A^{\prime \prime}(5)=$ \qquad
(h) Name a value of x at which $f(x)=f(7)$.

ANSWER: $x=$ \qquad
(i) Compute $A(4)-A(2)$.
\qquad

